Adaptive Construction of Surrogates for the Bayesian Solution of Inverse Problems
نویسندگان
چکیده
The Bayesian approach to inverse problems typically relies on posterior sampling approaches, such as Markov chain Monte Carlo, for which the generation of each sample requires one or more evaluations of the parameter-to-observable map or forward model. When these evaluations are computationally intensive, approximations of the forward model are essential to accelerating sample-based inference. Yet the construction of globally accurate approximations for nonlinear forward models can be computationally prohibitive and in fact unnecessary, as the posterior distribution typically concentrates on a small fraction of the support of the prior distribution. We present a new approach that uses stochastic optimization to construct polynomial approximations over a sequence of distributions adaptively determined from the data, eventually concentrating on the posterior distribution. The approach yields substantial gains in efficiency and accuracy over prior-based surrogates, as demonstrated via application to inverse problems in partial differential equations.
منابع مشابه
Inverse Problems in Imaging Systems and the General Bayesian Inversion Frawework
In this paper, first a great number of inverse problems which arise in instrumentation, in computer imaging systems and in computer vision are presented. Then a common general forward modeling for them is given and the corresponding inversion problem is presented. Then, after showing the inadequacy of the classical analytical and least square methods for these ill posed inverse problems, a Baye...
متن کاملHessian-Based Model Reduction for Large-Scale Data Assimilation Problems
Assimilation of spatiallyand temporally-distributed state observations into simulations of dynamical systems stemming from discretized PDEs leads to inverse problems with high-dimensional control spaces in the form of discretized initial conditions. Solution of such inverse problems in “real-time” is often intractable. This motivates the construction of reduced-order models that can be used as ...
متن کاملAn Adaptive Physics-Based Method for the Solution of One-Dimensional Wave Motion Problems
In this paper, an adaptive physics-based method is developed for solving wave motion problems in one dimension (i.e., wave propagation in strings, rods and beams). The solution of the problem includes two main parts. In the first part, after discretization of the domain, a physics-based method is developed considering the conservation of mass and the balance of momentum. In the second part, ada...
متن کاملAdaptive Hessian-Based Nonstationary Gaussian Process Response Surface Method for Probability Density Approximation with Application to Bayesian Solution of Large-Scale Inverse Problems
We develop an adaptive Hessian-based non-stationary Gaussian process (GP) response surface method for approximating a probability density function (pdf) that exploits its structure, particularly the Hessian of its negative logarithm. Of particular interest to us are pdfs that arise from the Bayesian solution of large-scale inverse problems, which imply very expensive-to-evaluate pdfs. The metho...
متن کاملProbabilistic Numerical Methods for PDE-constrained Bayesian Inverse Problems
This paper develops meshless methods for probabilistically describing discretisation error in the numerical solution of partial differential equations. This construction enables the solution of Bayesian inverse problems while accounting for the impact of the discretisation of the forward problem. In particular, this drives statistical inferences to be more conservative in the presence of signif...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- SIAM J. Scientific Computing
دوره 36 شماره
صفحات -
تاریخ انتشار 2014